时间 : 2009-12-05 22:06:42 来源:www.studa.net
成角锁定钢板治疗肱骨干骨折的生物力学研究,医学论文,医药学论文
图1成角锁定钢板俯视图
图2钢板螺孔剖视图
图3螺钉主视图
图4钢板锁定原理示意图
1.2.2力学测试仪器力学测试采用WE-10A液压万能材料实验机(红山实验机厂)以及YJ-29型静态电阻应变演示仪(上海华东电子仪器厂)扭角仪、高精度数显光栅位移测微器(KG-101,精度1‰)、电阻应变片(上海应变片厂常温应变片),502胶(上海新光化工厂),703粘合剂单组分硫化硅橡胶(江苏无锡胶粘剂厂)。1.3实验组与对照组固定方法1.3.1肱骨中段骨折模型的制作测量肱骨全长,定出中点位置后以线锯垂直于骨干长轴截断肱骨。1.3.2骨折固定传统LC-DCP钢板固定组:使用钛合金8孔钢板,依照标准AO固定技术加压固定肱骨骨折,骨折两端各使用3枚螺钉固定,中间钢板两孔不固定。成角锁定钢板组:先用2枚螺钉固定骨折一端后,在另一端钻一小孔,使用大巾钳使骨折端加压后,再用螺钉固定骨折另一端,同样骨折两端各使用3枚螺钉固定,中间钢板两孔不固定。1.4实验力学模型的建立所有标本在结构、载荷、高度、力学性质、贴片技术与位置等方面均保持一致,以提高测量精度,精心制作实验力学模型。根据肱骨的受力情况确定实验载荷。肱骨上举屈伸运动时载荷一般在400~800N左右,提物、支撑运动时载荷一般在500N左右,用手推拉时载荷一般在300~650N左右。据此在本实验中最大轴向载荷设计在1000N范围以内,以确保在生理运动范围内受力状态。由于肱骨的热传导性较差,且有有机质渗出,故应选择相应良好温度特性的片子,并进行温度补偿,并要求在零漂、机械滞后、疲劳寿命、绝缘电阻好的片子上。在模型中部位置上粘贴电阻应变片,采用高精度小标距应变片[R=(120±0.5)%,K=(2.16±0.5)%,1mm×1mm]。粘贴应变片时应遵循实验力学要求,操作规范。关于位移到测量,采用高精度数显光栅位移测微器(KG-101,精度1‰)测量。1.5实验测量将肱骨标本固定在特殊的夹具内,安装好载荷,位移,应变传感器,连接好所有导线,调正仪表,进行预加载100N,以消除骨的松弛、蠕变等时间效应影响,再进行轴向拉压实验、弯曲实验和扭转实验。实验机加载速率控制在1.4mm/min之内,实行分级加载,相应记录应变、位移等力学数据。为了提高精度,标本应多次重复测量。1.6数据处理对所有实验数据首先以线性回归,方差分析,经最小二乘法加以处理,再按数理统计加以筛检,计算相关参数,Student’sT检验,并用Chaurent判断进行精度分析与误差分析。所有计算采用SPSS10.0软件在微机上处理。2结果2.1肱骨轴向压缩实验2.1.1肱骨中段骨折内固定的应变根据所有标本的拉伸实验测量,可得到骨折断端应变值。载荷、应变值结果见表1。在生理载荷作用下,肱骨上的载荷-应变关系基本上呈线形变化,卸载后可恢复原状。肱骨断端两侧的应变均为压应变,应变越小说明器械固定越牢,肱骨轴向稳定。1000N时采用成角锁定钢板固定的应变小于LC-DCP钢板固定,两者相比相差10.4%,统计显示差异有显著性(P<0.05)。由此可见采用成角锁定钢板固定占有一定优势。
表1两种形式钢板固定载荷-应变关系(n=6,±s,με)
2.1.2肱骨中段骨折内固定的位移两种形式钢板固定载荷-位移关系见表2。在生理载荷作用下,肱骨上的载荷-位移关系基本上呈线形变化,卸载后可恢复原状。肱骨断端两侧的位移在1000N时采用成角锁定钢板固定的位移为2.15mm,LC-DCP钢板固定位移为2.40mm,两者相比相差10%,统计显示差异有显著性(P<0.05)。由此可见采用成角锁定钢板固定比较牢固,位移很小。
转贴于中国论文下载中心http://www.studa.netCopyright© 2000-2024 www.9939.net All Rights Reserved 版权所有 皖ICP备18005611号-6
特别声明:本站信息仅供参考 不能作为诊断及医疗的依据 本站如有转载或引用文章涉及版权问题请速与我们联系
Copyright© 2000-2024 www.9939.net All Rights Reserved 版权所有 皖ICP备18005611号-6
特别声明:本站信息仅供参考 不能作为诊断及医疗的依据 本站如有转载或引用文章涉及版权问题请速与我们联系